

Maryland's Stormwater, Sediment Control and Dam Safety Program

Stormwater Management Update

- Requires implementation of Environmental Site Design (ESD) to the maximum extent practicable
- ESD: "using small-scale stormwater management practices, nonstructural techniques, and better site planning to mimic natural hydrologic runoff characteristics and minimize the impact of land development on water resources"

Stormwater Regulation Changes 2000 vs. 2009

2000	2009
Nonstructural practices create	ESD to the MEP
incentive for environmentally friendly	Approvals required during 3 phases of
designs	project design
Intended to encourage planning for	Stormwater planning now required to
stormwater early in design	during concept design
Move from flood control to water quality Filtering practices (WQv) and control of frequent events (1- year, Cpv) BMP design criteria based on water quality performance (80 TSS/40 P)	Small scale ESD practices are required for minimum 1" of rainfall ESD criteria based on replicating hydrology for " woods in good condition" (about 2.7" rainfall)
Water quality for redevelopment	Water quality for redevelopment
20% reduction in impervious area	50% impervious area reduction
On-site or Off-site BMPs	On-site or off-site BMPs
Alternatives	Alternatives

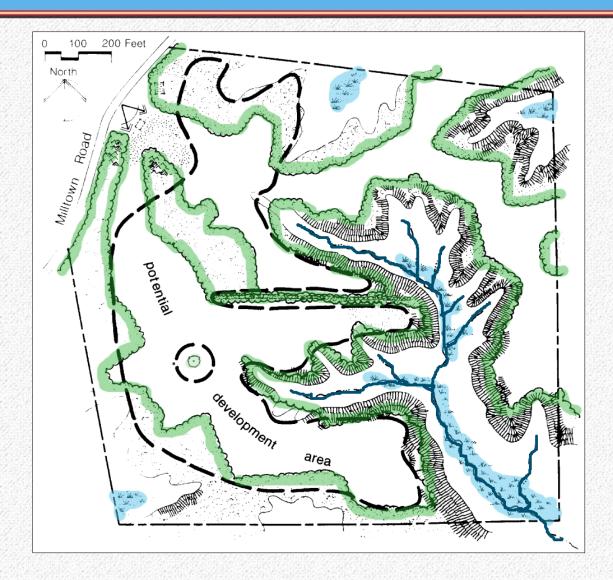
Concept Phase

- Natural Resource Inventory and Protection
- Implement Site Design Techniques to Minimize Impervious Area
- Integrate ESD Practices into the Landscape
- Using Natural Drainage Pathways for Stable Conveyance

Site Development Phase

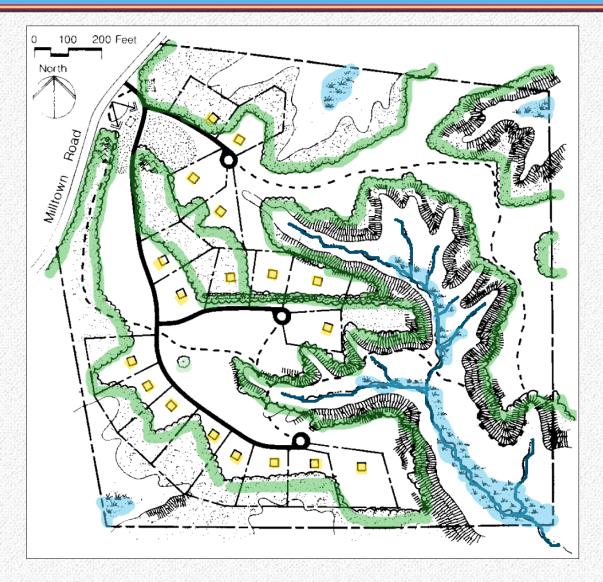
- Examine Use of Alternative Surfaces
- Use of Nonstructural Practices
- Integrate E & S Design into Plan
- Final Design and Approval Phase
 - ESD to MEP

Site Mapping/Fingerprinting



Natural Area Preservation Minimize Clearing and Grading

Site Mapping/Fingerprinting



Courtesy of Natural Lands Trust

Site Development Layout

Courtesy of Natural Lands Trust

ESD Techniques to Minimize Imperviousness

Clustered Development Shared Driveways Cul-de-sac Island

Site Development Layout

ESD Techniques to Minimize Imperviousness

Permeable Pavers in Residential and Commercial Development

Impervious Cover Reduction

Site Development Layout

Integrate ESD Practices into the Landscape

Rooftop Disconnections in Commercial and Residential Development

New ESD - BMPS

- Nonstructural BMPs (New Chapter 5)
 - Expanding and Enhancing Buffers
 - Reducing Imperviousness
 - Alternative Surfaces
 - Green Roofs
 - Permeable Pavements
 - Micro-Scale Practices
 - Rainwater Harvesting
 - Submerged Gravel Wetlands
 - Landscape Infiltration
 - Infiltration Berms
 - Dry Wells
 - Micro-Bioretention
 - Swales
 - Enhanced Filters

Residential Landscape Planters

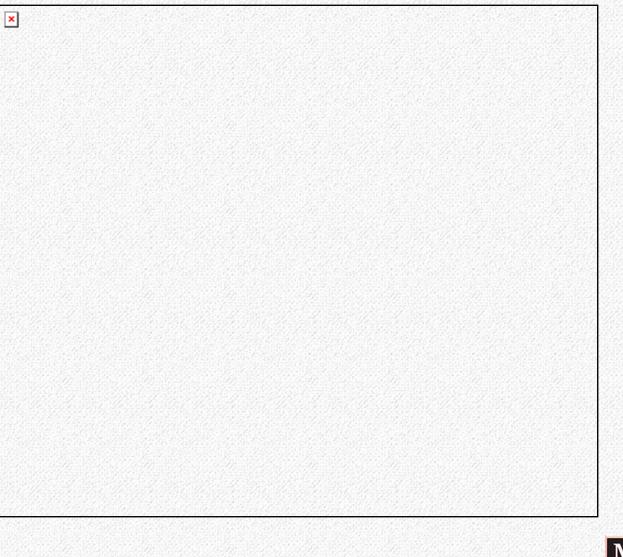
Residential Raingardens

Frederick County

Micro-scale Treatment Systems

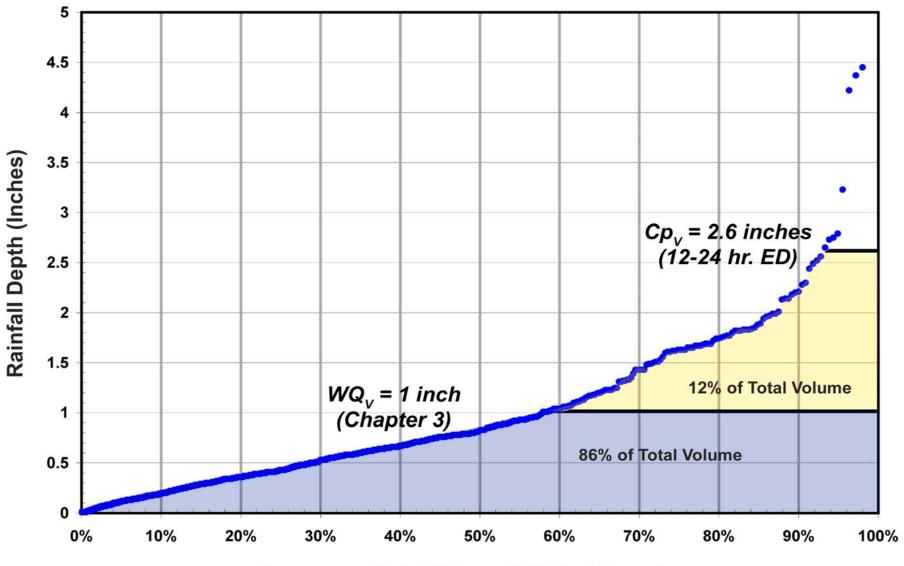
University of Maryland, Prince Georges County

Streetscape Projects



Addressing the Unified Sizing Criteria

Water Quality Volume (WQ_v):

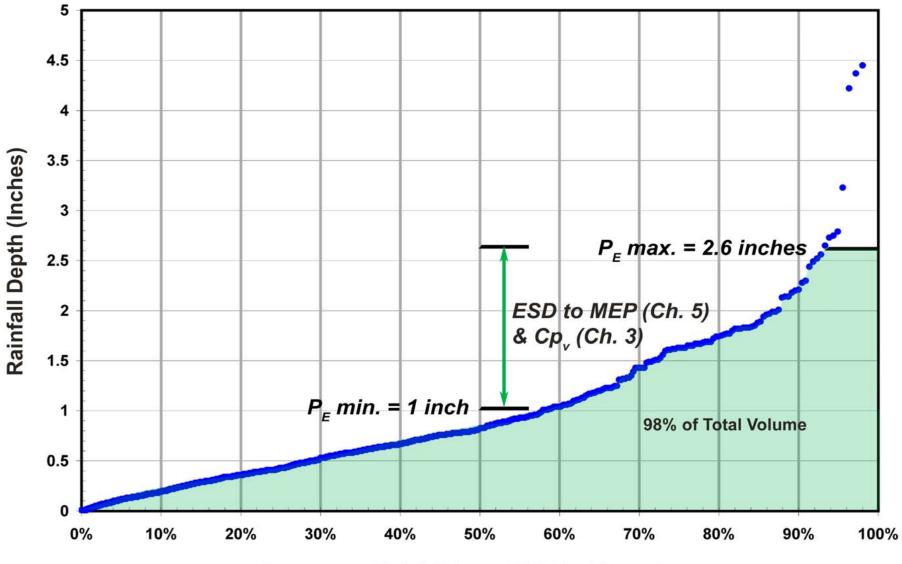

- Nonstructural practices (Old Chapter 5) are encouraged
- Structural practices (Chapter 3) must meet minimum standards (80%TSS / 40%TP)

Channel Protection Storage Volume (Cp_v):

- 12 or 24 hour extended-detention of 1-year storm
- Dry ED Ponds typically used

BWI-Thurgood Marshall Airport Rainfall (1996 - 2008)

Percentage of Rainfall Events (1573 Total Events)



- One predevelopment standard -"woods in good condition" – for all sites
- ESD targets (MEP) based on replicating wooded conditions
- ESD used to address Cp_v
- $WQ_v \& Re_v$ as a minimum standard
- Flexible sizing criteria (.2" 2.6"); practices may be used in series to meet targets

BWI-Thurgood Marshall Airport Rainfall (1996 - 2008)

Percentage of Rainfall Events (1573 Total Events)

Site Data:

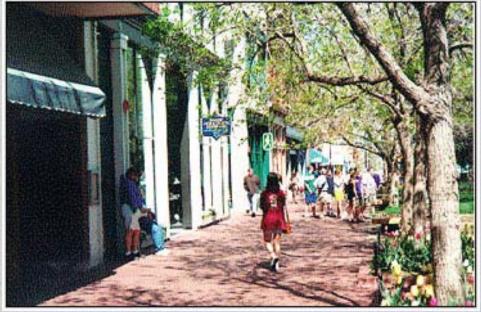
- Area 3.0 Acres
- Drainage Area 3.0 Acres
- Soils 100% B (Silt Loam or Loam)
- Impervious Area 1.9 Acres (63.3%)
- Existing Conditions:
 - •80% Meadow / 20% Woods
 - •RCN 57

Step 1: Determine ESD Goals

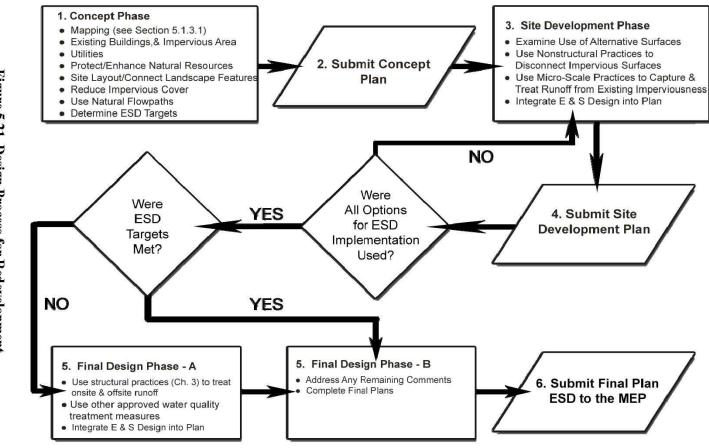
A: RCN (woods in good condition) – 55

B: Target P_E – 2.0 inches

	Hydrologic Soil Group B							
%I	RCN*	P _E = 1"	1.2"	1.4"	1.6"	1.8"	2.0"	2.2"
15%	67	55						
20%	68	60	55	55			T	
25%	70	64	61	58				
30%	72	65	62	59	55			
35%	74	66	63	60	56			
40%	75	66	63	60	56			
45%	78	68	66	62	58			
50%	80	70	67	64	60			
55%	81	71	68	65	61	55		
60%	83	73	70	67	63	58		
65% 🗕	05	76	72	00	05	- 60	55	
70%	87	77	74	71	67	62	57	



Using ESD practices to meet these targets will satisfy Re_v , WQ_v , and Cp_v . Potential practices include permeable pavements, micro-bioretention, or landscape infiltration.

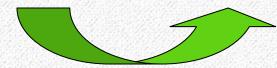


Redevelopment

Require more management in less densely developed sites

1. An approving agency shall require that stormwater management be addressed according to new development requirements when existing site impervious area is less than or equal to 40%.

- Design Manual: "the local approving agency may allow lands protected by forest preservation, conservation easements, or other mechanism to be subtracted from the total site area."
 - Flexibility for case by case review
 - Master plans and local priorities are considered during review process
- Promote ESD project designs:
 - Preserve natural areas
 - Reduce impervious area
 - Develop watershed plans


When Existing I<40% New Development Requirements

- Existing I = 39%, P_E = 1.8" (Table 5.3)
- ESD on sites with 61% pervious areas

Implement ESD techniques and micro-scale practices to the MEP

- Disconnections
- Sheetflow
- Minimize impervious area
- Use available landscaping for storage and treatment

North Bay Environmental Education Camp Redevelopment in Cecil County

06/02/2008 11:58 AM

06/02/2008 11:58 AM

- 2. Proposed redevelopment project designs shall:
 - a. Reduce existing impervious area by 50% within the LOD;
 - Implement ESD to the MEP to provide water quality treatment for 50% of the existing impervious area within the LOD; or
 - c. Use a combination a. and b.

- **3.** Alternative stormwater management measures:
 - a. **Structural stormwater BMP**;
 - b. Off-site BMP; or
 - c. Any combination of impervious area reduction, ESD implementation, structural practices or off-site treatment.

Need to keep requirements flexible and provide incentive for redevelopment

- 4. An approving agency may develop other policies that may include:
 - a. Retrofitting existing structural BMPs;
 - **b.** Stream restoration;
 - c. Watershed management plans;
 - d. Trading policies that involve other pollution control programs;
 - e. Fees paid in an amount specified by the approving agency; or
 - f. Other practices

- Provide greater water quality treatment
- Flexibility and options to integrate local priorities into watershed specific goals.
- Redevelopment is encouraged by reduced requirements compared to new development

Redevelopment Requirement Comparison

Impervious Area	Old Regs (20%)	New Regs (50%)	If New Development
1.0 acre existing	0.20 acre (1 inch)	0.50 acre (1 inch)	
1.0 acre proposed			1.0 acres (2.7 inch)
Volume Requirements	690 cu. ft.	1,724 cu.ft.	9,311 cu. ft.

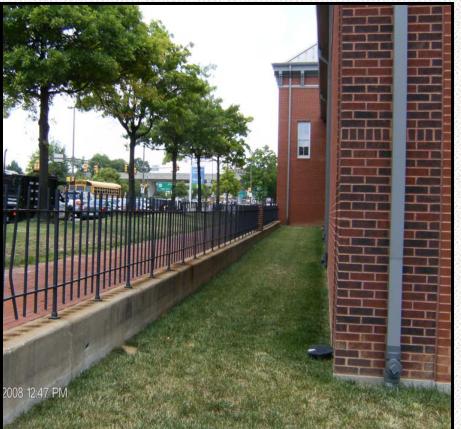
Redevelopment Requirement Comparison

Impervious Area	Old Regs (20%)	New Regs (50%)	If New Development
0.50 acres	0.10 acre	0.25 acre	
existing	(1 inch)	(1 inch)	
0.68 acres	0.18 acre	0.18 acre	0.68 acres
proposed	(1 inch)	(2.7 inch)	(2.7 inch)
Volume	1,076 cu.	2,538	6,331 cu. ft.
Requirements	ft.	cu. ft.	

University of Naryland School of Nursing Maryland Maryland

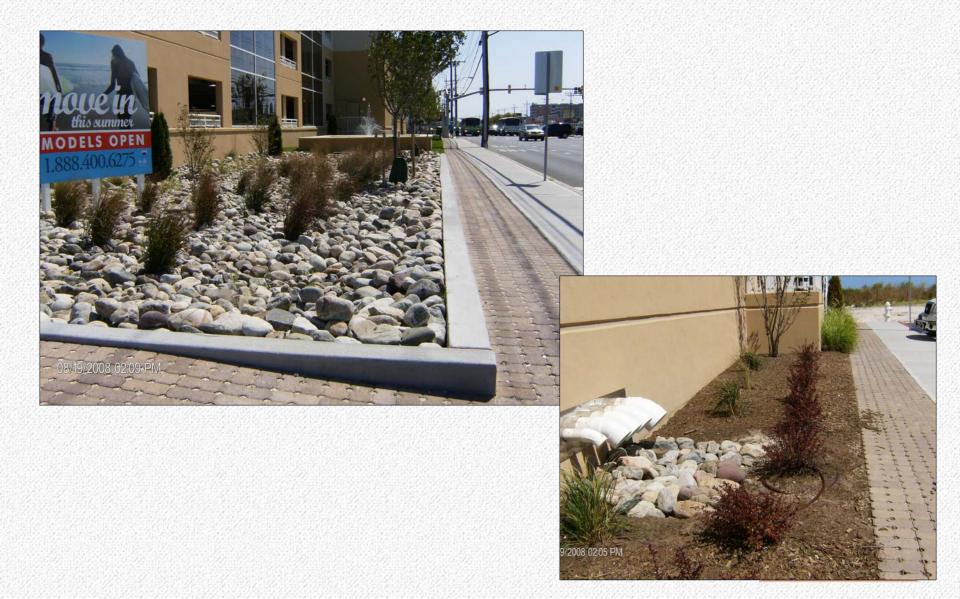
NO PARKING LOADING DOCK VEHICLES WILL BE TOWED AT OWNERS EXPENSE

07/10/2008 12:29 PM


University of Maryland Medical Center

VA Medical Center 2

University of Maryland School of Nursing



Ocean City Porous asphalt

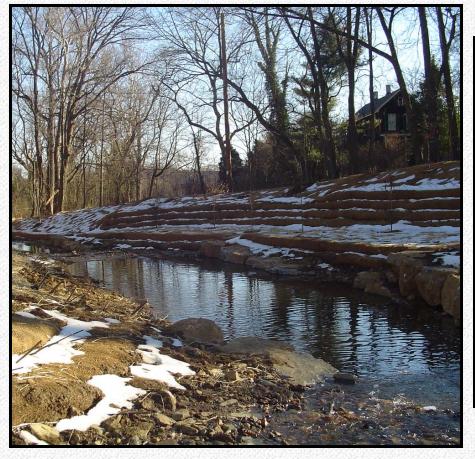
Gateway Grande Redevelopment, Ocean City

Alternative Stormwater Management Measures

Martin Plaza Redevelopment

Baltimore County and Martin Financial Assoc.

Public – Private Partnership


WQ treatment of 85 acres of existing impervious

Stony Run Stream Restoration

December, 2006

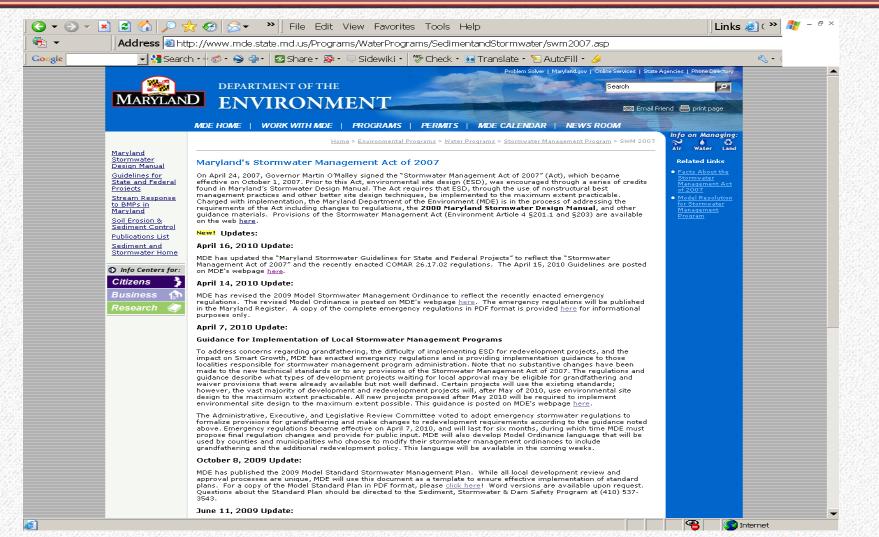
Stony Run Stream Restoration

July, 2008

February, 2007

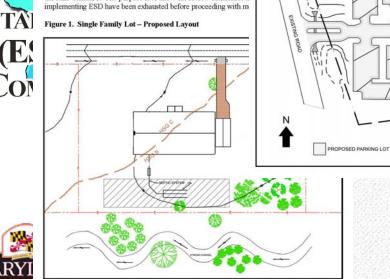
Off-Site Stormwater Management

Baltimore City School Retrofits: Impervious area reduction Rooftop disconnection to rain garden


Stormwater Guidelines

www.MDE.STATE.MD.US

ESD Process & Computations

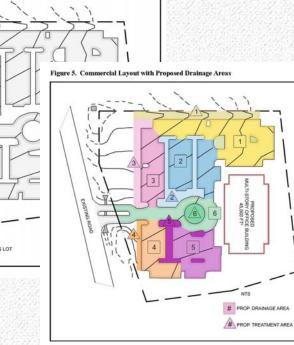


The project for this example consists of a multi-story office building and parking lot. A sketch of the proposed site is shown in Figure 4.

Figure 4. Proposed Commercial Site

Example No. 1 – Single Family Residential Construction The proposed project involves the construction of a house, garage, residential lot. Sketches of the existing lot and proposed work are : Concept Plan Design and Computations The Concept Plan represents the first steps in a project's developm

Environmental Site Design (E Process & Con July 2010



natural resources, initial project layout, and the preliminary design techniques. During this phase, the designer demonstrates how ESE the MEP standard. The purpose is to show the review authorities the

Department of the

1800 Washington Boulevard | Baltimore, MD 21230-1718 | www.mde.state.md.us 410-537-3000 | 800-633-6101 | TTY Users: 800-735-2258 Martin O'Malley, Governor | Anthony G. Brown, Lt. Governor | Shari T. Wilson, Secretary

a shi a s

Drainage (DA)	Impervious Area	Landscaped Area	Approx. %Site	Target ESD.
1	24,500 ft ²	3,200 ft ²	16%	3,950 ft ³
2	20,000 ft ²	1,000 ft ²	12%	2,950 ft3
3	15,000 ft ²	2,500 ft ²	10%	2,460 ft3
4	13,000 ft ²	2,000 ft ²	9%	2,215 ft ³
5	17,000 ft ²	3,000 ft ²	12%	2,950 ft3
6	5,000 ft ²	300 ft ²	3%	740 ft ³
Building	45,000 ft ²		26%	6,400 ft ³
Open Space		22,740 ft ²	13%	2,935 ft ²
Σ	139,500 ft ²	34,740 ft ²	100%	24,600 ft3

2010 Standards

- ESD to the MEP!
- Planning and Design Section
- Stabilization Requirements
- Grading Unit
- TMDLs and Tier II, Etc.
- Revised Standard Practices
- New Standard Practices

- EPA's 280 NTU Requirement for NPDES Construction Activities (On Hold!)
- EPA's 20 acre/10 acre (2011/2014) threshold for passive controls
- Changes to Maryland Standards and Specifications for Soil Erosion and Sediment

Control

- ESD to the MEP!
- New Standards
- New Guidelines

Protecting Our Streams, Rivers......

And the Chesapeake and Coastal Bays!

Updates are available on MDE's Website.

http://www.mde.state.md.us

MARYLAND DEPARTMENT of the ENVIRONMENT

Sediment, Stormwater & Dam Safety Program WATER MANAGEMENT ADMINISTRATION

 1800 Washington Blvd., Ste. 440
 Phone: 410-537-3543

 Baltimore MD 21230-1708
 Fax: 410-537-3553

www.mde.state.md.us

